Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators
نویسندگان
چکیده
منابع مشابه
Non-negative Perturbations of Non-negative Self-adjoint Operators
Let A be a non-negative self-adjoint operator in a Hilbert space H and A0 be some densely defined closed restriction of A0, A0 ⊆ A 6= A0. It is of interest to know whether A is the unique non-negative self-adjoint extensions of A0 in H. We give a natural criterion that this is the case and if it fails, we describe all non-negative extensions of A0. The obtained results are applied to investigat...
متن کاملHardy Spaces Associated with Non - Negative Self - Adjoint Operators IMI
Maximal and atomic Hardy spaces Hp and H A, 0 < p ≤ 1, are considered in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. It is shown that Hp = H A with equivalent norms.
متن کاملHardy Spaces Associated with Non-negative Self-adjoint Operators
Maximal and atomic Hardy spaces Hp and H A, 0 < p ≤ 1, are considered in the setting of a doubling metric measure space in the presence of a non-negative self-adjoint operator whose heat kernel has Gaussian localization and the Markov property. It is shown that Hp = H A with equivalent norms.
متن کاملNon-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملSpectral Properties of Random Non-self-adjoint Matrices and Operators
We describe some numerical experiments which determine the degree of spectral instability of medium size randomly generated matrices which are far from self-adjoint. The conclusion is that the eigenvalues are likely to be intrinsically uncomputable for similar matrices of a larger size. We also describe a stochastic family of bounded operators in infinite dimensions for almost all of which the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2007
ISSN: 0022-0396
DOI: 10.1016/j.jde.2006.11.001